(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
activate(n__sieve(X)) → sieve(X)
activate(n__nats(X)) → nats(X)
activate(X) → X
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
sieve(cons(0, n__sieve(X22240_4))) →+ cons(0, n__sieve(sieve(X22240_4)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0].
The pumping substitution is [X22240_4 / cons(0, n__sieve(X22240_4))].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
filter(cons(X, Y), 0', M) → cons(0', n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0', Y)) → cons(0', n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(s(N)))
zprimes → sieve(nats(s(s(0'))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
activate(n__sieve(X)) → sieve(X)
activate(n__nats(X)) → nats(X)
activate(X) → X
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
filter(cons(X, Y), 0', M) → cons(0', n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0', Y)) → cons(0', n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(s(N)))
zprimes → sieve(nats(s(s(0'))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
activate(n__sieve(X)) → sieve(X)
activate(n__nats(X)) → nats(X)
activate(X) → X
Types:
filter :: cons:n__filter:n__sieve:n__nats → 0':s → 0':s → cons:n__filter:n__sieve:n__nats
cons :: 0':s → cons:n__filter:n__sieve:n__nats → cons:n__filter:n__sieve:n__nats
0' :: 0':s
n__filter :: cons:n__filter:n__sieve:n__nats → 0':s → 0':s → cons:n__filter:n__sieve:n__nats
activate :: cons:n__filter:n__sieve:n__nats → cons:n__filter:n__sieve:n__nats
s :: 0':s → 0':s
sieve :: cons:n__filter:n__sieve:n__nats → cons:n__filter:n__sieve:n__nats
n__sieve :: cons:n__filter:n__sieve:n__nats → cons:n__filter:n__sieve:n__nats
nats :: 0':s → cons:n__filter:n__sieve:n__nats
n__nats :: 0':s → cons:n__filter:n__sieve:n__nats
zprimes :: cons:n__filter:n__sieve:n__nats
hole_cons:n__filter:n__sieve:n__nats1_0 :: cons:n__filter:n__sieve:n__nats
hole_0':s2_0 :: 0':s
gen_cons:n__filter:n__sieve:n__nats3_0 :: Nat → cons:n__filter:n__sieve:n__nats
gen_0':s4_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
filter,
activate,
sieveThey will be analysed ascendingly in the following order:
filter = activate
filter = sieve
activate = sieve
(8) Obligation:
TRS:
Rules:
filter(
cons(
X,
Y),
0',
M) →
cons(
0',
n__filter(
activate(
Y),
M,
M))
filter(
cons(
X,
Y),
s(
N),
M) →
cons(
X,
n__filter(
activate(
Y),
N,
M))
sieve(
cons(
0',
Y)) →
cons(
0',
n__sieve(
activate(
Y)))
sieve(
cons(
s(
N),
Y)) →
cons(
s(
N),
n__sieve(
filter(
activate(
Y),
N,
N)))
nats(
N) →
cons(
N,
n__nats(
s(
N)))
zprimes →
sieve(
nats(
s(
s(
0'))))
filter(
X1,
X2,
X3) →
n__filter(
X1,
X2,
X3)
sieve(
X) →
n__sieve(
X)
nats(
X) →
n__nats(
X)
activate(
n__filter(
X1,
X2,
X3)) →
filter(
X1,
X2,
X3)
activate(
n__sieve(
X)) →
sieve(
X)
activate(
n__nats(
X)) →
nats(
X)
activate(
X) →
XTypes:
filter :: cons:n__filter:n__sieve:n__nats → 0':s → 0':s → cons:n__filter:n__sieve:n__nats
cons :: 0':s → cons:n__filter:n__sieve:n__nats → cons:n__filter:n__sieve:n__nats
0' :: 0':s
n__filter :: cons:n__filter:n__sieve:n__nats → 0':s → 0':s → cons:n__filter:n__sieve:n__nats
activate :: cons:n__filter:n__sieve:n__nats → cons:n__filter:n__sieve:n__nats
s :: 0':s → 0':s
sieve :: cons:n__filter:n__sieve:n__nats → cons:n__filter:n__sieve:n__nats
n__sieve :: cons:n__filter:n__sieve:n__nats → cons:n__filter:n__sieve:n__nats
nats :: 0':s → cons:n__filter:n__sieve:n__nats
n__nats :: 0':s → cons:n__filter:n__sieve:n__nats
zprimes :: cons:n__filter:n__sieve:n__nats
hole_cons:n__filter:n__sieve:n__nats1_0 :: cons:n__filter:n__sieve:n__nats
hole_0':s2_0 :: 0':s
gen_cons:n__filter:n__sieve:n__nats3_0 :: Nat → cons:n__filter:n__sieve:n__nats
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_cons:n__filter:n__sieve:n__nats3_0(0) ⇔ n__nats(0')
gen_cons:n__filter:n__sieve:n__nats3_0(+(x, 1)) ⇔ cons(0', gen_cons:n__filter:n__sieve:n__nats3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
activate, filter, sieve
They will be analysed ascendingly in the following order:
filter = activate
filter = sieve
activate = sieve
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol activate.
(10) Obligation:
TRS:
Rules:
filter(
cons(
X,
Y),
0',
M) →
cons(
0',
n__filter(
activate(
Y),
M,
M))
filter(
cons(
X,
Y),
s(
N),
M) →
cons(
X,
n__filter(
activate(
Y),
N,
M))
sieve(
cons(
0',
Y)) →
cons(
0',
n__sieve(
activate(
Y)))
sieve(
cons(
s(
N),
Y)) →
cons(
s(
N),
n__sieve(
filter(
activate(
Y),
N,
N)))
nats(
N) →
cons(
N,
n__nats(
s(
N)))
zprimes →
sieve(
nats(
s(
s(
0'))))
filter(
X1,
X2,
X3) →
n__filter(
X1,
X2,
X3)
sieve(
X) →
n__sieve(
X)
nats(
X) →
n__nats(
X)
activate(
n__filter(
X1,
X2,
X3)) →
filter(
X1,
X2,
X3)
activate(
n__sieve(
X)) →
sieve(
X)
activate(
n__nats(
X)) →
nats(
X)
activate(
X) →
XTypes:
filter :: cons:n__filter:n__sieve:n__nats → 0':s → 0':s → cons:n__filter:n__sieve:n__nats
cons :: 0':s → cons:n__filter:n__sieve:n__nats → cons:n__filter:n__sieve:n__nats
0' :: 0':s
n__filter :: cons:n__filter:n__sieve:n__nats → 0':s → 0':s → cons:n__filter:n__sieve:n__nats
activate :: cons:n__filter:n__sieve:n__nats → cons:n__filter:n__sieve:n__nats
s :: 0':s → 0':s
sieve :: cons:n__filter:n__sieve:n__nats → cons:n__filter:n__sieve:n__nats
n__sieve :: cons:n__filter:n__sieve:n__nats → cons:n__filter:n__sieve:n__nats
nats :: 0':s → cons:n__filter:n__sieve:n__nats
n__nats :: 0':s → cons:n__filter:n__sieve:n__nats
zprimes :: cons:n__filter:n__sieve:n__nats
hole_cons:n__filter:n__sieve:n__nats1_0 :: cons:n__filter:n__sieve:n__nats
hole_0':s2_0 :: 0':s
gen_cons:n__filter:n__sieve:n__nats3_0 :: Nat → cons:n__filter:n__sieve:n__nats
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_cons:n__filter:n__sieve:n__nats3_0(0) ⇔ n__nats(0')
gen_cons:n__filter:n__sieve:n__nats3_0(+(x, 1)) ⇔ cons(0', gen_cons:n__filter:n__sieve:n__nats3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
filter, sieve
They will be analysed ascendingly in the following order:
filter = activate
filter = sieve
activate = sieve
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol filter.
(12) Obligation:
TRS:
Rules:
filter(
cons(
X,
Y),
0',
M) →
cons(
0',
n__filter(
activate(
Y),
M,
M))
filter(
cons(
X,
Y),
s(
N),
M) →
cons(
X,
n__filter(
activate(
Y),
N,
M))
sieve(
cons(
0',
Y)) →
cons(
0',
n__sieve(
activate(
Y)))
sieve(
cons(
s(
N),
Y)) →
cons(
s(
N),
n__sieve(
filter(
activate(
Y),
N,
N)))
nats(
N) →
cons(
N,
n__nats(
s(
N)))
zprimes →
sieve(
nats(
s(
s(
0'))))
filter(
X1,
X2,
X3) →
n__filter(
X1,
X2,
X3)
sieve(
X) →
n__sieve(
X)
nats(
X) →
n__nats(
X)
activate(
n__filter(
X1,
X2,
X3)) →
filter(
X1,
X2,
X3)
activate(
n__sieve(
X)) →
sieve(
X)
activate(
n__nats(
X)) →
nats(
X)
activate(
X) →
XTypes:
filter :: cons:n__filter:n__sieve:n__nats → 0':s → 0':s → cons:n__filter:n__sieve:n__nats
cons :: 0':s → cons:n__filter:n__sieve:n__nats → cons:n__filter:n__sieve:n__nats
0' :: 0':s
n__filter :: cons:n__filter:n__sieve:n__nats → 0':s → 0':s → cons:n__filter:n__sieve:n__nats
activate :: cons:n__filter:n__sieve:n__nats → cons:n__filter:n__sieve:n__nats
s :: 0':s → 0':s
sieve :: cons:n__filter:n__sieve:n__nats → cons:n__filter:n__sieve:n__nats
n__sieve :: cons:n__filter:n__sieve:n__nats → cons:n__filter:n__sieve:n__nats
nats :: 0':s → cons:n__filter:n__sieve:n__nats
n__nats :: 0':s → cons:n__filter:n__sieve:n__nats
zprimes :: cons:n__filter:n__sieve:n__nats
hole_cons:n__filter:n__sieve:n__nats1_0 :: cons:n__filter:n__sieve:n__nats
hole_0':s2_0 :: 0':s
gen_cons:n__filter:n__sieve:n__nats3_0 :: Nat → cons:n__filter:n__sieve:n__nats
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_cons:n__filter:n__sieve:n__nats3_0(0) ⇔ n__nats(0')
gen_cons:n__filter:n__sieve:n__nats3_0(+(x, 1)) ⇔ cons(0', gen_cons:n__filter:n__sieve:n__nats3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
sieve
They will be analysed ascendingly in the following order:
filter = activate
filter = sieve
activate = sieve
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol sieve.
(14) Obligation:
TRS:
Rules:
filter(
cons(
X,
Y),
0',
M) →
cons(
0',
n__filter(
activate(
Y),
M,
M))
filter(
cons(
X,
Y),
s(
N),
M) →
cons(
X,
n__filter(
activate(
Y),
N,
M))
sieve(
cons(
0',
Y)) →
cons(
0',
n__sieve(
activate(
Y)))
sieve(
cons(
s(
N),
Y)) →
cons(
s(
N),
n__sieve(
filter(
activate(
Y),
N,
N)))
nats(
N) →
cons(
N,
n__nats(
s(
N)))
zprimes →
sieve(
nats(
s(
s(
0'))))
filter(
X1,
X2,
X3) →
n__filter(
X1,
X2,
X3)
sieve(
X) →
n__sieve(
X)
nats(
X) →
n__nats(
X)
activate(
n__filter(
X1,
X2,
X3)) →
filter(
X1,
X2,
X3)
activate(
n__sieve(
X)) →
sieve(
X)
activate(
n__nats(
X)) →
nats(
X)
activate(
X) →
XTypes:
filter :: cons:n__filter:n__sieve:n__nats → 0':s → 0':s → cons:n__filter:n__sieve:n__nats
cons :: 0':s → cons:n__filter:n__sieve:n__nats → cons:n__filter:n__sieve:n__nats
0' :: 0':s
n__filter :: cons:n__filter:n__sieve:n__nats → 0':s → 0':s → cons:n__filter:n__sieve:n__nats
activate :: cons:n__filter:n__sieve:n__nats → cons:n__filter:n__sieve:n__nats
s :: 0':s → 0':s
sieve :: cons:n__filter:n__sieve:n__nats → cons:n__filter:n__sieve:n__nats
n__sieve :: cons:n__filter:n__sieve:n__nats → cons:n__filter:n__sieve:n__nats
nats :: 0':s → cons:n__filter:n__sieve:n__nats
n__nats :: 0':s → cons:n__filter:n__sieve:n__nats
zprimes :: cons:n__filter:n__sieve:n__nats
hole_cons:n__filter:n__sieve:n__nats1_0 :: cons:n__filter:n__sieve:n__nats
hole_0':s2_0 :: 0':s
gen_cons:n__filter:n__sieve:n__nats3_0 :: Nat → cons:n__filter:n__sieve:n__nats
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_cons:n__filter:n__sieve:n__nats3_0(0) ⇔ n__nats(0')
gen_cons:n__filter:n__sieve:n__nats3_0(+(x, 1)) ⇔ cons(0', gen_cons:n__filter:n__sieve:n__nats3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.